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Motivation - Baryon asymmetry 
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Motivation - CP violation 

 

Permanent Electric Dipole Moment (EDM) of a particle 

violates CP symmetry 



Standard Model prediction: 

 

(without QCD θ-term) 

 

Motivation - Constrain non-SM physics 

Best limit (2006)[2]: 

 

[2] Baker et al., PRL 97 (2006) 131801. 
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Motivation - Constrain non-SM physics 

[2] Baker et al., PRL 97 (2006) 131801. 

Excellent observable to 

constrain non-SM physics! 

Best limit (2006)[2]: 

 

Standard Model prediction: 

 

(without QCD θ-term) 
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Ramsey’s method of separated oscillatory fields: 

 

  

 

 

Experimental method 

Uncertainty on dn due 

to counting statistics: 

 

 

E: electric field 

𝛼: visibility (polarization) 

T: free precession time 

N: neutron counts 

 

B=1μT 



Setup 

About 45 people in 

the nEDM 

collaboration, 7 

countries 

 



Setup 

Located at the Paul Scherrer Institute 

 



Setup 

 

Ultra cold neutrons 

• UCNs have very low energies: ~100neV 

• Speed less than 7m/s 

• Full reflection at certain surfaces 

• Can be guided and stored in a vessel! 

 

Setup was moved from ILL to PSI where a dedicated UCN 

source has been built. 

 

 



Setup 



 

 

 

Setup 

UCNs 

B=1μT 



 

 

 

Setup 

UCNs 

B=1μT 



 

Surrounding field compensation and temperature stabilisation 

 

 

Setup 



Statistical sensitivity 

Statistical uncertainty: 

20 days in 2014:  

      accumulated 6E-26 ecm 

 

2015 data taking ongoing: 

      <2E-25ecm/day 

 

We should reach 1.5E-26ecm in 

2016 



Systematic effects 

 

Knowledge of magnetic field is important: 

 

 

 

We have a cohabiting Hg magnetometer to monitor drifts 

• Gas of polarised 199Hg inside precession chamber 

• RF pulse to flip the spin 90 degrees 

• Measure absorption of circularly polarised light which is spin-

dependent 

• Modulation frequency of absorption is Larmor frequency 
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Systematic effects 

Effects related to the Hg magnetometer: 

1. Gas at room temperature, so density distribution is different 

compared to UCNs. If there is a vertical gradient the two species 

see a different field. 
 

 

 
 

2. Geometric phase effect: interplay of motional magnetic field (vxE) 

and magnetic field gradients 

3. Hg atoms sample the field non-adiabatically 𝐵 , whereas 

neutrons are adiabatic 𝐵  
 

Crossing point analysis (RAL-Sussex) to take these effects 

into account 

UCNs Hg 



Systematic effects 

Crossing point analysis: 

1. Shift of center of gravity: 

 

 

2. Interplay of the motional magnetic field with magnetic field 

gradients gives rise to a frequency shift proportional with the 

electric field:  
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Systematic effects 

Crossing point analysis: 

3. Hg atoms sample the field non-adiabatically 𝐵 , whereas 

neutrons are adiabatic 𝐵  

 

Two options: 

-Calculate from field maps  

-Monitor online with Cs magnetometers  

 (still in development!) 



Systematic effects 

 

Cs magnetometers give information about the field shape: 

• 16 CsM around the precession chamber 

• Probe the magnitude of the field locally 

 

 

 



Systematic effects 

 

Cs magnetometers give information about the field shape: 

• 16 CsM around the precession chamber 

• Probe the magnitude of the field locally 

 

Variometer method to measure transverse components: 

• Apply extra transverse magnetic field and measure 

response of CsM 

 
 

• If         is known well enough, one can extract BT 

 

 

 

 



Next phase: n2EDM 

Based on experience with nEDM setup, we are building a 

new improved setup: 

• New mu-metal shield 

• Double chamber setup 

• He magnetometers 

• Improved Hg magnetometer (laser readout) 

• Vector Cs magnetometers 

• Simultaneous spin analysis 

• Current source stabilised with KM 

• … 

 

Prospect: start data taking in 2018-2019 

Goal:  3 × 10−27𝑒 ∙ cm 



Conclusion & Outlook 

 

Our apparatus is functioning well: 

o Sensitivity is excellent 

o Systematic effect are under control < 5 × 10−27𝑒 ∙ cm 

 

We should reach 1.5 × 10−26𝑒 ∙ cm by mid 2016! 

 

Next stage is to build a new setup (n2EDM) which should be 

able to reach 3 × 10−27𝑒 ∙ cm 

 

 



Thank you for your 

attention! 

 



 

• Improved version of the RAL-Sussex-ILL apparatus (current 
best limit) at powerful new UCN source at PSI 

 

• Higher statistical sensitivity 

o Increase UCN lifetime 
• New storage chamber 

• New neutron guides 

o Higher electric field 
• New electrodes 

 

• Magnetic field control 
• Cesium Magnetometers 

• Thermal stabilisation 

• Surrounding field compensation 

 

 

 

 

Current status - Setup 

o  More UCNs 
• UCN source 

• New neutron detection system 

o … 

 

• Magnetic field mapping 

• Correction coils 

• ... 

 



Spin analyser system 

 



USSA 



n2EDM 



Current status - Systematic effects 

May 2014 

Field mapping 

& magnetic field 

stabilization 

Magnetic field non-homogeneity is the last challenge! 



HgM 

 



Geometric phase effect 



Offset problem 

 



Origins of CP violation 

Taken from Parity and Time-Reversal Violating Moments of Light Nuclei – Jordy de Vries 
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